Appendix 12-2: Water Quality Exceedances in the Biscayne Bay Region (1988–2003)

Richard Alleman

INTRODUCTION

Miami-Dade County Department of Environmental Resource Management (DERM) has collected water samples at 71 saltwater sites in Biscayne Bay and reported 1858 results that exceeded Florida water quality criteria (62-302.530) for saltwater from 1988 to 2003 (**Table 1**). The majority of the exceedances were for coliform bacteria, and most of those occurred at tributaries where surface water enters the bay. Most of the exceedances (74 percent) occurred within the Miami River basin.

Table 1. Number of times from January 1988–September 2003 that saltwater water quality results at specific saltwater locations within Biscayne Bay exceeded state criteria. Criteria is as follows: fecal coliform bacteria \leq 800 CFU; total coliform bacteria \leq 2400 CFU; cadmium \leq 9.3 μ g/L; copper \leq 3.7 μ g/L; lead \leq 8.5 μ g/L; zinc \leq 86 μ g/L. Results are from the Final Status and Trends Report for the Biscayne Bay Water Quality Status and Trends, Miami-Dade County DERM, 2005.

Site	Fecal Coliform	Total Coliform	Cadmium	Copper	Lead	Zinc
AC01	6	4	_	_	_	_
AC02	10	10	_	_	_	_
AR01	0	2	0	0	0	0
BB01	4	3	_	_	_	_
BB02	0	0	0	4	0	0
BB03	2	2	_	_	_	_
BB04	0	0	_	_	_	_
BB05A	_	_	0	0	0	0
BB06	0	0	0	0	0	0
BB07	0	0	_	_	_	_
BB09	0	0	_	_	_	_
BB10	0	0	0	2	0	0
BB11	1	3	_	_	_	_
BB14	0	0	0	0	0	0
BB15	0	0	_	_	_	_
BB16	0	0	_	_	_	_
BB17	1	0	0	0	0	0
BB18	0	0	_	_	_	_
BB19	9	11	_	1	_	_
BB22	0	0	0	0	0	0
BB23	_	1	0	0	0	0
BB24	1	0	_	1	_	_
BB25	0	1	-	-	-	_
BB26	0	0	_	_	-	_
BB27	0	1	_	_	_	_
BB28	2	1	_	_	_	_
BB29	1	1	_	_	_	_
BB31	0	0	0	0	0	0

Site	Fecal Coliform	Total Coliform	Cadmium	Copper	Lead	Zinc
BB32	0	0	0	2	0	0
BB34	1	1	_	_	_	_
BB35	0	0	_	_	_	_
BB36	0	0	_	_	_	_
BB37	0	0	_	_	_	_
BB38	0	0	_	_	_	_
BB39A	1	1		0	0	0
BB41	0	0	_	_	_	_
BB42	0	0	_	_	_	_
BB43	0	0	_	_	_	-
BB44	0	0	_	_	_	_
BB45	0	0	_	_	_	_
BB46	0	0	_	_	_	_
BB47	0	0	0	0	0	1
BB48	0	0	_	_	_	_
BB50	0	0	_	_	_	_
BB51	0	0	_	_	_	_
BB52	0	0	0	0	0	0
BB53	0	0	0	0	0	0
BB54	0	0	_	_	_	_
BL01	4	3	0	1	0	0
BL02	4	3	_	_		_
BS01	11	16	0	2	0	0
CD01/01 A	0	1	_	0	0	1
CG01	4	3	0	0	0	0
GL02	18	24	_	_	_	_
LR01	44	63	0	2	1	0
LR03	59	71	1	3	1	0
MI01	1	1	_	0	0	0
MR01	58	71	0	1	0	0
MR02	91	118	_	1	0	0
MR03	81	99	0	29	0	0
MR04	62	76	_	_	_	_
MR05	50	45	_	_	_	_
MR06	47	48	0	16	0	0
MR07	47	52	_	_	_	_
MW01	0	3	0	0	0	0
PR01	3	3	0	0	0	0
SK01	10	6	0	3	0	0
SP01	14	10	0	1	0	0
TM02	28	33	_	0	0	0
WC02	147	165	0	6	2	0
Total	822	956	1	73	4	2
· Jui	J 022				-1	1858
Grand Total						